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This paper presents a general theoretical treatment of a new class of long 
stationary waves with finite amplitude. As the property in common amongst 
physical systems capable of manifesting these waves, the density of the (incom- 
pressible) fluid varies only within a layer whose thickness h is much smaller than 
the total depth, and it is h rather than the total depth that must be considered as 
the fundamental scale against which wave amplitude and length are to be 
measured. Internal-wave motions supported by the oceanic thermocline appear 
to be the most promising field of practical application for the theory, although 
applications to atmospheric studies are also a possibility. 

The waves in question differ in important respects from long waves of more 
familiar kinds, and in $ 1  their character is discussed on the basis of a comparison 
with solitary-wave and cnoidal-wave theories on customary lines, such as apply 
to internal waves in fluids of limited depth. A summary of some simple experi- 
ments is included at the end of 3 1. Then, in $ 2, the comparatively easy example 
of two-fluid systems is examined, again to illustrate principles and to prepare the 
way for the main analysis in $ 3. This proceeds to a second stage of approximation 
in powers of wave amplitude, and its leading result is an equation (3.51) deter- 
mining, for arbitrary specifications of the density distribution, the form of the 
streamlines in the layer of heterogeneous fluid. Periodic solutions of this equation 
are obtained, and their properties are discussed with regard to the interpretation 
of internal bores and wave-resistance phenomena. Solutions representing solitary 
waves are then obtained in the form 

where x is the horizontal co-ordinate and where ah = O(h2). (The latter relation 
between wave amplitude and length scale contrasts with the customary one, 
aA2 = O(h3)).  The main analysis is developed with particular reference to systems 
in which the heterogeneous layer lies on a rigid horizontal bottom below an 
infinite expanse of homogeneous fluid; but in $ 4  ways are given to apply the 
results to various other systems, including ones in which the heterogeneous layer 
is uppermost and is bounded by a free surface. Finally, in $5, three specific 
examples are treated: the density variation with depth is taken, respectively, to 
have a discontinuous, an exponential and a ‘tanh’ profile. 

t On leave from the University of Cambridge. 
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1. Introduction 
This investigation is concerned with waves of finite amplitude in stable 

heterogeneous-fluid systems of the general kind illustrated in figure 1. The dis- 
tinguishing feature of these theoretical models is that the density variations 
extend only over a limited depth h but the total depth of the fluid is infinite. The 
first example, figure 1 (a),  may be useful for the description of wave motions in the 
atmosphere, being an attractive alternative to models in which a rigid upper 
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FIGURE 1. Illustration of various heterogeneous-fluid systems in general 
category under investigation. 

boundary is supposed, and the examples in figures 1 ( c )  and 1 (d) are obviously 
relevant to the oceanic thermocline. In  the analysis to be made, the lengths of the 
waves are assumed to be considerably greater than h, but of course no long-wave 
approximation is possible for the motion in the infinite expanse of homogeneous 
fluid that adjoins the heterogeneous layer. The latter aspect of the problem 
presents an analytical contingency unfamiliar in long-wave theories, such as the 
classical theory of long surface waves, and some novel results are forthcoming. 
In  particular, a new class of solitary waves is found which promises to have an 
important bearing on the interpretation of internal waves in the oceans. 

While the subject of the present study appears to have been unexplored 
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previously in the literature,? a great deal of work has been done on internal 
solitary waves in fluids of finite total depth. Keulegan (1953) and Long (1956) 
pioneered this field by investigating solitary waves in two-layer systems, and the 
theory of solitary waves in fluids whose density varies continuously with height 
has been developed by Peters & Stoker (1960), Ter-Krikorov (1963), Long (1965), 
Benjamin (1966) and several others. The periodic cnoidal-wave solutions that 
are generally obtainable by the same methods of approximation that yield 
solitary waves (e.g. see Lamb 1932, 5 253) were noted by most of these authors, 
and a complete classification of the physical applications of the theory was given 
by Benjamin (1966). However, the finite depth of the fluid, implying the influ- 
ence of both lower and upper boundaries, is an essential specification of the 
theoretical models treated in all this work, and the results are useless for applica- 
tion to the present type of model. Consider, for instance, Long’s results for a 
solitary wave in a two-layer system (or see Benjamin 1966, § 4, Example 2). If in 
these results the depth of one layer is made infinite, the wave speed appears in 
the limit to take a definite value in terms of the depth of the other layer, but the 
length of the wave appears to increase without bound. One might thus be misled 
into supposing there is no realizable solitary wave in a fluid of infinite total depth. 
But this is a spurious conclusion, of course, relating to a situation where the 
former methods of analysis break down. 

The essentials of the present theory, and the contrast with customary solitary- 
wave theories as exemplified by the work just mentioned, may be explained 
simply as follows. The key to the interpretation is the ‘dispersion relation’ 
between the frequency w and wave-number k of infinitesimal periodic waves, for 
which every dependent variable takes the form 

, (1.1) u = ,Qei(wt--kx) 

where xis the co-ordinate in the direction of propagation and ii2 may be a function 
of the co-ordinate perpendicular to x. In  the customary case, the distinguishing 
property is that the phase velocity c = w / k  has a smooth maximum co at k = 0, 
that is, for waves of extreme length. This means that, for small enough values - 

of k, one has 
w = kco(l -Pk2), 

in which P is a positive constant, depending of course on the particular system 
under investigation. [Recall, for example, the well-known dispersion relation for 
surface waves on water of depth H ,  

w = (gk tanh kH)4, 

which for kH < 1 can be approximated in the form (1.2) with co = (gH)rC and 
/3 = QH2.1 By Fourier’s theorem it follows from (1.2) that a long infinitesimal 

t But while writing this paper the author became aware that work on the same problem 
has been done by Mr R. E. Davis and Prof. A. Acrivos at Stanford University. In parti- 
cular, they have made some excellent experiments on internal solitary waves in fluids 
with density distributions as shown in figure 1 (d). It is hoped their work will be published 
soon, complementing the present independent study. 

36 Fluid Mech. 29 
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wave of general form propagating in the positive x-direction is governed approxi- 
mately by the equation 

au a% a3u 

Oax O ax3 E+C -+c  p- = 0, 

since this is satisfied independently by every component (1.1) with k sufficiently 
small. 

Still referring to the customary case in general, we next note that if the effects 
of frequency dispersion are ignored, the non-linear effects of finite amplitude can 
usually be analysed without further approximation by well-tried procedures such 
as the ‘shallow-water ’ theory for surface waves (e.g. see Stoker 1957, ch. 10). For 
a wave advancing towards a region at rest in which u = 0, it appears that the 
dependent variable u is conserved along a characteristic given to a first approxi- 
mation by dxldt = co+Cu, where C is a constant, so that u satisfies 

au au au 
-+c  -+cu- = o .  
at Oax ax 

Now, various schemes might be used to derive a consistent first approximation 
to the effects of both dispersion and finite amplitude. But the outcome of such 
a derivation may confidently be anticipated from what has already been noted: 
the last term in (1.3), representing the effects of dispersion, will simply be added 
to the last term in (1.4) which accounts for the non-linear effects. Thus one has 

a~ au au a3u 
-+c  -+cZc-+c p- = 0. at Oax ax 0 ax3 

This type of equation was first introduced in the theory of long surface waves by 
Korteweg & de Vries (1895), and it is often named after them. Its relevance to 
internal waves in fluids of limited depth has been demonstrated explicitly by 
Benney (1966), having been strongly implied by much of the previous work on 
the subject. 

The solutions of (1.5) in the form u = f ( x  - ct) are very well known. There are 
periodic solutions expressible in terms of Jacobian elliptic functions-the cnoidal 
waves discovered by Korteweg & de Vries; and there is the solitary-wave solution 

u = asech2((aC/12c,p)+ (x-ct)], 
(1.6) 1 with a = 3(C-C0)/C. 

Note the important properties (i) that the departure of the wave speed c from the 
maximum speed co of infinitesimal waves is proportional to the amplitude a, and 
(ii) that the effective length scale of the wave, say A, is ( 12c,p/aC)&. In terms of 
dimensionless variables, when for a particular system the units of length and 
time have been appropriately chosen (e.g. H and H/co = (H/g)B for surface waves 
on water of depth H ) ,  it will turn out that ( 12c0/3/C) = O( 1); thus, the property (ii) 
means that ah2 = O(1). 

For systems of the type now to be treated, on the other hand, the dispersion 
relation for infinitesimal long waves has leading terms in the form 

W = ~Co(1-Y l k l ) ,  (1.7) 
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with y > 0, and the difference between (1.7) and (1.2) has crucial implications. 
A Fourier component like (1.1) now satisfies 

au au 8th 
- + c  - = c 
at O a x  OY lkl ax' 

but obviously we cannot as before find a differential equation that will govern an 
infinitesimal wave of general form. However, assuming a wave that vanishes at 
x = & a, we may generalize (1.8) by the Fourier integral theorem, writing 

where 9 denotes the linear operation defined by 

(1.10) 

[Note that 9 ( [ ( x ) )  is the same as llfy(z,O) if $(x, y) is the solution to the Dirichlet 
problem for the upper half-plane: V2$ = 0 in y 2 0, $ = - [(x) on y = 0. Hence 
it can be seen that - 9 { [ ( x ) }  is the hydrodynamic pressure on an infinitesimal 
hump described by y = [(z), over which there is an irrotational flow of an infinite 
fluid with unit density andvelocity. This physical meaning is, of course, precisely 
theone underlying the appearance of 9 in the present analysis.] It maybe antici- 
pated that the effects of finite amplitude will enter in the same way as before, and 
so we are faced with the equation 

(1.11) 

which is the counterpart of the Korteweg-de Vries equation in the present case. 
Assuming a solution depending an 2 = x - ct alone, and using the fact that the 

operation of integration from 55 = -a (where u = 0)  and the operation 9 are 
commutative, one may obtain from (1.11) 

(1.12) - 2(c - co)u + cu2 = 26, yP{u].  

This form of equation is derived on a more definite basis in the following pages, 
and it makes a nice conclusion to the analysis that the equation can be solved 
exactly. 

with 

The solution is 

(1.13) 

This new type of solitary wave has the property (i) noted above with regard 
to the customary case, but not the property (ii). Instead of the assumption 
ah2 = O( 1) which is the customary formal basis of solitary-wave derivations 
(cf. Ursell 1953), we must take ah = O(1). Periodic solutions, for which the 
definition (1.10) of .9 needs to be replaced by a corresponding expression 
involving Fourier series, will also be presented in § 3. 

36-2 
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The writer has made some simple experiments on solitary waves of the new 
kind. Their intention was merely to check, for his own satisfaction, whether these 
waves are easily realizable, but the outcome was definite enough to seem worth 
putting on record. A Lucite tank 6 ft. long and 7 in. wide was filled with brine to 
a depth of about 6in., and then a layer of salt-free but faintly dyed water about 
*in. deep was carefully added. Straight-crested waves were generated by the 
horizontal movement of a wooden cylinder immersed in the upper layer and 
spanning the tank close to one end. Thecylinder was supported by a frame which 
could slide freely along the edges of the tank, and an effective way to produce the 
waves was simply to push this through a few inches towards the opposite end of 
the tank. It was observed that from a fairly vigorous initial disturbance, a 
solitary wave would emerge distinctly and would travel to the far end of the tank, 
from which it was reflected intact. The interface between the brine and the fresh 
water was always displaced downwards by the wave, as is predicted by the 
theoretical results given below in $ $4.1,4.2 and in Example 1 of 3 5; and the wave 
clearly showed the same remarkable property of persistence that is familiarly 
observed in practical examples of the classical solitary wave. As perhaps the most 
convincing evidence that this was indeed a non-linear wave of permanent form, 
it was found that attempts to produce waves of elevation-by moving the 
cylinder in the opposite direction-resulted only in transients which were very 
rapidly dispersed. An undesirable feature left unremedied in these simple experi- 
ments was that the free surface did not follow the internal-wave motions, being 
apparently immobilized by contamination; thus, small particles in the surface 
were seen to remain at rest, whereas particles floating just below it were seen to 
be displaced horizontally by the passage of a solitary wave. Consequently, 
through the action of viscosity in the boundary layer formed beneath the free 
surface, the waves were attenuated rather rapidly. For a reliable comparison with 
the inviscid-fluid theory, either experiments on a considerably larger scale would 
be needed, or special measures would have to be taken to clean the free surface. 

2. Preliminary discussion of two-fluid systems 
Before embarking on the main analysis in 3 3, we examine the following easy 

example in order to illustrate principles. As depicted in figure 2, fluid of constant 
density p1 lies, when undisturbed, in a uniform layer of depth h, below fluid of 
constant density p2 ( < pl) in a layer of depth h,, and the system is bounded at the 
bottom y = 0 and top y = h,+h, by rigid horizontal planes. 

For infinitesimal waves propagating horizontally relative to a state of rest, 
such that the equation of the disturbed interface between the two fluids is 

(2.1) y = h, + 8 eWct-@, 

the relation between phase velocity c and wave-number k is easily found by the 
use of velocity potentials. The result is 

c2 = S(P1- P2) 

k(p, coth khl +p2 coth kh,) 
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(cf. Lamb 1932, p. 371). According to (2.2), c2 has a maximum at k = 0,  its 
value being 

(2.3) d P 1 -  P2)  

c: = (Pl/hl) + ( P A ) ’  

and we note that co remains determinate if we take h,+m in (2.3). Indeed, it 
appears that for waves of extreme length compared with h, an infinitely deep 
upper fluid has no inertial effect and exerts only a hydrostatic pressure on the 
perturbed interface, reducing the action of gravity in the ratio ( p l - p z ) : p l .  We 
go on to show, however, that the upper fluid always has a crucial influence on 
the dispersive properties of waves, at small but finite values of k. 

FIGURE 2. System comprising two immiscible fluids in superposed layers. 

If h, and h, are both finite, it  follows from (2.2) that 

Thus, in this case we have an instance of the kind of dispersion relation for small k 
described by (1.2), and from this fact alone it can be concluded that solitary 
waves of the customary type are possible [for explicit demonstrations of them, 
see Keulegan (1953), Long (1956) or Benjamin (1966, 6 4, Example 2)]. If h2/hl 
is now made very large, the coefficient of k2 in (2.4) becomes proportional to h,h,; 
therefore a solitary-wave theory on customary lines will show the length h of the 
wave to increase indefinitely with h,, since, according to the general argument 
explained in $ 1, h is proportional to the square root of this coefficient. But this 
result is clearly spurious, because the binomial expansion of (2.2) in powers of k 
and the limit h, -+ co cannot correctly be taken in this order. 

Proceeding correctly to take the limit first, having 

lim (kcothkh,) =.lkl, 
hp+w 

we obtain from (2.2) for the case of infinite depth 

c = C O P  - HPZIPl) hl I k l+  0(k2h2,)). (2.5) 

This exemplifies the type of dispersion relation (1.7) and hence implies the new 
type of solitary wave. 

While the solitary-wave equation for the infinitely deep two-fluid system (with 
h2 = 03, hl = h, say: see figure 7 in $5 below) is obtainable from the general 
results derived in the next section, it can also be found in several simpler ways 
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unsatisfactory for the general case. We can, for instance, complete the details of 
the simple illustrative argument given in 0 1. First, in view of the point made 
earlier that the upper fluid exerts only a hydrostatic pressure on waves of extreme 
length, a well-known result from classical shallow-water theory is taken over. 
According to Lamb (1932, p. 279) ,  we have that if the interface is given by 

then, for a very long wave,f approximately satisfies the non-linear equation (1 .4)  
with C = 3c0/2h. We also have from (2 .5 )  that y = Q(p2/p1)h, and hence we can 
specify the solitary-wave equation (1 .12)  as 

Y = h + f ( x ,  t ) ,  (2 .6)  

from which the specific form of the solution (1 .13)  follows. 

3- Main analysis 3.1. T h e  governing equation 

We shall first treat the problem indicated by figure 3 and later, in 9 4,  consider 
how the results of the analysis can be applied to other physical systems. The fluid 
lies on a rigid horizontal bottom y = 0, and its density p decreases upwards to 
a certain height, y = h in the undisturbed state, above which the fluid is homo- 

A 1 
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FIUURE 3. Definition sketch showing primary density distribution. The height y of the 
streamlines is considered as a function of their height q in the original flow and of the 
horizontal co-ordinate x. 

geneous and extends to y = 00. We shall deal only with waves of permanent form 
that propagate with constant velocity c towards a region a t  rest; accordingly, the 
system is viewed from a travelling frame of reference in which the motion is 
everywhere steady and the undisturbed fluid has a uniform velocity c in the 
horizontal x-direction. 

As explained by Benjamin (1966, p. 248) ,  one may take the height y of the 
individual streamlines in this reference frame to be the dependent variable, and 
let the independent variables be x and the original height q of the respective 
streamlines:? thus 

Then, on the assumption that the fluid is incompressible and non-diffusive, the 
density everywhere is expressible by 

Y = Y(%,V)* (3 .1)  

P = P(rl),  (3 .2 )  
t Note that cq is the stream-function. 
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which represents the property that p is constant along each streamline. And by 
transformation of the equation for the stream-function (e.g. see Yih 1965, p. 76; 
or Benjamin 1966, equation (2.8) with (3.2) substituted) it can easily be shown 

which serves as the governing dynamical equation. Our object is to find approxi- 
mate solutions of this second-order differential equation for y(x, r), subject to  the 
conditions y = 0 for 7 = 0 and y - 7 -+ 0 for 7 +- co. These solutions are treated as 
perturbations of the solution y = 7 which represents the undisturbed state, and 
they are developed by considering two regions of the flow separately: (I) the lower 
region 7 < F, for which a long-wave approximation can be made; and (11) the 
upper region 7 2 h wherein p is constant and therefore the right-hand side of 
(3.3) vanishes. At the interface 7 = h between the two regions, obviously y must 
be a continuous function of 7, and y7 also must if p is assumed to be continuous 
across the interface. The case of a two-fluid system may be included by placing 
the jump in density just below 7 = h (see Example 1 in $ 5 ) .  

We note that the horizontal and vertical components of velocity are c/y7 and 
cyx/y7, respectively (cf. Benjamin 1966, equations (3.2)), but no explicit con- 
sideration of the velocity field will be needed henceforth. 

3.2. Infinitesimal sinusoidal waves 
After substitution of 

in (3.3), linearization in e gives 
Y = r + 4 ( x , 7 )  (3.4) 

with K = g/c2; and in region I1 this equation reduces to 

L x  + C7?) = 0. (3.6) 

Putting C(x, 7) = #(q) etkX with k real, and requiring that 6 vanish for 7 -too, we 
deduce from (3.6) that 

And for region I we obtain from (3.5) 

#(q) = q5(h)e-lkl(7--h) for 7 2 h. (3.7) 

The boundary condition at  the bottom is 

#(O) = 0 ;  (3.9) 

and, by virtue of (3.73, the condition on the solution of (3.8) at the upper boundary 

(3.10) of region I is 

since both # and #7 are required to be continuous at 7 = h. 
Equation (3.8) coupled with (3.9) and (3.10) constitute a Sturm-Liouville 

system of the standard type, determining a set of eigenvalues K ( ~ )  (n= 1 ,2 ,3 , .  ..) 
for given k. Since p7 < 0 (by the assumption of stability), the basic conclusions of 

q5,(h) = - Ikl q5(h), 
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the Sturmian theory (Ince 1926, ch. 10) tell us that 0 < dl) < d2) < ... and that 
the set generally has no limit-point except K = co. The respective eigenfunctions 
$(n) have exactly n - 1 zeros in the open interval (0 ,  h),  and so only the first, having 
no zero in the open interval, represents a wave wholly of elevation or depression. 
The first wave mode is the most important physically since dl)is least, and there- 
fore the wave speed &) is greatest, for given k. On the understanding that a parti- 
cular wave mode from a possibly infinite sequence of modes is always separately 
in question, the indices (n)  are conveniently omitted henceforth. 

By means of the Sturmian comparison theorems it is easy to show that, for any 
particular mode, c is largest at Ic = 0. But, as discussed previously, c does not 
have a smooth maximum in the present case, essentially because of the depend- 
ence on l Ic l  in (3.10). To investigate the properties of the system for small values 
of k, we may assume the existence of the power-series expansions 

(3.11) 

and evaluate the leading coefficients successively. A normalization of the solution 
q5 may be specified for convenience; this hardly matters at the stage of approxi- 
mation to be reached here, but to be definite we take 

$(A)  = = 1, (3.12) 

implying the set of conditions $Jh)  = 0 for m > 0 which would be convenient 
at later stages. 

1 4(r) = $ o ( r )  + lkl $l(rl) + k242(r) + .**, 

K = K O + K l l k l  + K 2 k 2 +  ..., 

The first step gives 

I $ o =  0 at T,I = 0, (3.13) 

Note that this Sturm-Liouville system determines the speed co = (g/K,,)* of 
infinitesimal waves of extreme length. The second step gives 

i 4, = 0 at 7 = 0, (3.14) 

One component of the complementary function for the differential equation 
(3.14) has been defined as $o. Hence it readily follows that the solution satisfying 
the first boundary condition and complying with (3.12) is 
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where the second expression follows from the first by use of the differential 
equation (3.13) for q50 and integration by parts. The substitution of (3.15) into 
the second boundary condition (3.14) then leads to 

(3.16) 

which shows, as expected, that K~ is always positive. We note that 

c =  C ~ { ~ - - $ ( K ~ / K ~ ) ~ ~ ~ + . . . } ,  (3.17) 

thus demonstrating the type of dispersion relation discussed generally in 0 1. 
Evidently the value of the integral in (3.16) will increase with the number of 
oscillations of the particular q50 in the interval (0, h), SO that the K~ will be smaller 
for larger mode number n. Thus, for the higher modes the peak of wave speed at  
k = 0 will be progressively less sharp. 

3.3. Long waves of finite amplitude 
To obtain an approximation to finite stationary waves, we must proceed as in 
customary solitary-wave theory to develop at least two stages of an expansion 
in powers of the small parameter E measuring amplitude. At the same time 
x-derivatives in the equations must be arranged in order of magnitude by speci- 
fying a suitably stretched horizontal scale. Accordingly we write, for application 
in region I ,  

and, guided by the considerations outlined in $1, we specify 

(3.18)i- Y - 7 = €6 = .C(O)(X, 7) + E26(1)(X7 7) + * - - 9  

x = €X, (3.19) 

assuming the waves to be so long that derivatives with respect to X are of the 
same order of magnitude as the functions differentiated. Also, the wave speed is 

(3.20) 
expanded in the form 

c2 = cg(A(0, + EA(~)  + . . .}, 
where co is the speed of extremely long infinitesimal waves as considered in $ 3.2. 

Now, it is clear that the formal expansion (3.18), in which &oj(X, 7) is supposed 
to be free from explicit dependence on E ,  will serve only for region I (the layer 
0 < 7 < h),  not for the infinite region I1 which has no length scale upon which to 
define a long-wave approximation. The way to deal with region I1 is shown by 
the preceding discussion of linearized theory: just as in developing the k-expan- 
sion, we must consider a first approximation akin to (3.7) for this region, in effect 
anticipating several stages of the expansion (3.18) for region I. To use words that 
have become very familiar nowadays, we might say that inner and outer expan- 
sions are required, to be matched across the interface 7 = h. Since the governing 
equation (3.3) is second-order, it is merely required, as in the linearized theory, 
to make both y and y7 continuous across 7 = h. Again, if the division into two 
regions is not precisely defined but instead the density approaches a constant 
value asymptotically, then the matching can be over a region common to I and 11, 

t Note the different meanings of the three forms of indices: inferior (12) as used here, 
superior (n) and inferior m as used previously. 
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following the familiar method expounded in the book by Van Dyke (1964). For 
simplicity the analysis will be developed with reference only to the case of a 
precise interface, but the extension to the latter case will be made clear by 
Example 3 in 0 5. 

In  region I1 a first approximation to (3.3) is 

e2(&X+&1! = 0 for 7 2 h, (3.21) 

and the remainder from (3.3) is seen to be only (?(a5) when (3.21) is satisfied. We 
could, therefore, proceed to O(@)  in developing the inner expansion (3.18) before 
needing a higher approximation for region 11. Equation (3.21) is the same as (3.6), 
of course, but it will be solved in the present form-at least for the time being-to 
make clear the dependence on 8. Suppose now that the vertical displacement at 

ax, h) = P ( X ) ,  (3.22) 
the interface is given by 

where F ( X )  is either periodic with period 2L = 2eZ, so that 

with 

m 

P ( X )  = x A,  exp [ - inNX/L] 
N=-53 

or is a function representing a solitary wave, so that 

F ( X )  = Jm P ( K )  exp [ - ~ K X I  r~ 
--m 

with 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

Then, respective to the two cases, the solution of (3.21) vanishing for q+co 

6 = x A,exp [ - n{iNX + e [XI (7 - h))/L], (3.27) 

or 5 = I m  %(K)exp[-{iK~+e\Kl(7--h))]d~. (3.28) 

Hence we have qx, h) = - e=%-{wu), (3.29) 

where F{F(X)) is defined either by 

L --a, 

is either m 

-m 

-m 

s{.F(x)) = 5 5 I N I  ~ , e x p [ - i n ~ ~ / ~ l ,  (3.30) 

or, as considered already in 0 1, 

(3.31) 

(Another representation of the operator 2F will be discussed in the appendix to 
this paper.) The pair of equations (3.22) and (3.29) amount to a generalization 
of (3.10) and may similarly be regarded as an upper boundary condition on 
region I, valid to O(e4). 
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After the expansion (3.18) has been substituted into (3.3), the separation of 
terms O(s) gives 

(3.32) 

and the respective boundary conditions are 

GO)(X, 0) = 0, &O),(X, h) = 0, (3.33) 

the latter of which follows when (3.18) is substituted into (3.29). Hence we deduce 
that, to this &st approximation, 

(3.34) 

where $o is the eigenfunction determined by (3.13) and F ( X )  is an arbitrary 
function. To save a lot of writing subsequently, we can again, as in (3.12), 
arbitrarily make 

To complete a normalization corresponding to (3.12), we can further choose to 
treat e F ( X )  as the final solution for the displacement at  7 = 8, so specifying that 
Q1,, Qz), I&), . . . should all be made zero at 7 = h. The subsequent stages of approxi- 
mation will then present a succession of equations for P ( X ) ,  each one determining 
this solution with greater precision than at the previous stage. 

The second approximation to (3.3) in region I, when terms O(G) are collected, 

$o(h) = 1. (3.35) 

and the boundary conditions are 

& d X ,  0) = 0, C(d,(X, 4 = -F{F(X,>, (3.37) 

the latter of which comes from (3.29). Equation (3.36) is soluble in exactly the 
same way as the equation (3.14) that was presented a t  the second stage of deriving 
the k-expansion for infinitesimal waves. Denoting the right-hand side of (3.36) 
by R ( X ,  7) for short, we find that the solution satisfying the first of the boundary 
conditions (3.37) and complying with the normalization explained below (3.35) is 

(3.38) 

Hence, recalling the last of (3.13) and also (3.35), we obtain from the second 

(3.39) 

When R is written in full here and an integration by parts is made, the integrated 
terms are seen to vanish in consequence of the boundary conditions (3.13) on $o, 
and thus it follows that 
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This equation for F ( X )  has the same form as (1.12) and it is the central result 
of this analysis. After solving (3.40) we could go on to substitute the expression 
(3.38) for i& into (3.18) and so obtain an approximation for y - 7  explicitly to 
0(e2).  But this step would add nothing of qualitative significance further to what 
we already have. The essential character of the solution for long waves of finite 
amplitude and permanent form appears to be unfolded in the expression (3.34) 
for <(o), when the second stage of approximation is used to determine F ( X )  as 
shown here. This situation is familiar from classical solitary-wave theory, and 
reference may be made to Benjamin (1967, appendix) for a discussion of the 
point in a context rather similar to the present one. 

[Note that since $o varies between zero and an extremum over the interval 
(O,h), there appears to be no likelihood of the second integral in (3.40) having a 
(non-dimensionalized) value much less than O( 1)-as it well might if, for instance, 
$o were to oscillate like sin (nny/h) between zeros a t  both limits of integration. 
Thus, relative to  the second, non-linear term in (3.40), the implied error in the 
present approximation is simply O(E) ,  and therefore the assumption of small 
amplitude (compared with h) is sufficient justification for the approximation. 
This point is noteworthy because the mentioned difficulty does in fact arise in 
the treatment, along lines similar to the present, of long internal waves in fluids 
of limited total depth. For that case in general, it  was shown by Benjamin (1966, 
pp. 254, 255) that the coefficient of the leading non-linear term (in effect, the 
counterpart ofthe coefficient of F2in (3.40)-i.e. V as defined by (3.53) below) is 
only O(b),  where b is the fractional density variation. Moreover, when 7 is used as 
an independent variable like it is here, the error in an equation corresponding to 
(3.40) is O ( E )  and therefore is O ( E / ~ )  relative to the retained non-linear term. 
Consequently, the approximation implies a very severe limitation on amplitude E 

if, as is usual, b is rather small. The difficulty was shown to be obviated by 
replacing $o(q) with $,(y) in the approximate solution corresponding to (3.34): 
this adjustment reduces the relative error to O(s) ,  independently of b. As already 
explained, however, the present solution is free from the difficulty in question, 
and so apparently no further precision would be gained by such an adjustment.] 

3.4. Summary of preceding results 

It will be helpful to sum up the main equations and recast them in the forms most 
convenient for application to specific problems. The parameter E has now served 
its purpose in the systematic derivation of approximate equations and we can 
dispense with it henceforth, rewriting the equations directly in terms of physical 
variables and letting the smallness of perturbations be implicit. A horizontal 
length scale h = O(e-lh) = O(a-lh2) will then emerge automatically in the results. 
For instance, we put 

€ 4 1 )  = 2 7 (3.41) 
c2 - C t  

CO 

and we present the solution of the problem as an expression for 

$4-7 = z ( x , 7 ) ,  (3.42) 

identifying this with the approximation S ~ ( ~ ) ( X ,  7). 
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Considered in this way, the results of the preceding subsection amount to the 
following. First, the vertical displacement of the interface q = h is expressed by 

z(2,  h) = f(4, 
where either, for periodic waves, 

m 

with 

Then the solution in region I is 
2 = f (4  $o(r), 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

where $o is defined by the Sturm-Liouville system (3.13),7 which also defines co, 
and by the normalization (3.35). And the solution in region I1 is either, for 
periodic waves, 

W 

z = c A,exp[-n(iNx+ IN1 (v-h)}/Z], (3.49) 
-m 

or, for solitary waves, 

Finally, by (3.40), the function f(x) must satisfy 

Uf - VfZ+ F{f} = 0, 

where 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

and either, for periodic waves, 

(3.54) 

(3.55) 

na' 
9 { f }  = - C. ANINIexp[-inNx/Z], 

1 -m 

or, for solitary waves, 

~ { f }  = j I kl f ( k )  exp [ - ikx] dk. 
--m 

3.5. Periodic waves 
To find a periodic solution of (3.51), Fourier-series expansions of each of the three 
functions f ,  f2 and 9 { f }  appearing in the equation may be supposed to exist. 
A solution is hence established if it can be shown that the equation is satisfied 

t It is perhaps worth a reminder here that any one of the set of wave modes determined 
b y  (3.13) is admissible: i.e. $o &'. co z cp'. 
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formally by such a set of expansions taken term by term, and that the series 
for f is convergent. Accordingly we take 

m 

N = - m  
f 2  = C. BNexp [ -inNx/Z], 

C AM exp [ - i7~rMx/Z] 
21 m 

so that 
'N=$J 0 [ M = - w  

= 5 AMAN-,. 
M E - m  

Then (3.51) gives 

(3.56) 

(3.57) 

(3.58) 

which needs to be satisfied for all N. 

(3.59) 
Now, let us try 

A, = AexPl-PINIl, 

where A andp are real constants, withp > 0 necessarily to make the series (3.44} 
convergent. We have 

CD m 

I m 

s=l 
= A2exp[-pINI] IN1+1+2 C exp[-2ps] 

= A2exp [ -p I NI ] { I NI + cothp}. (3.60) 

Hence (3.56) reduces to 

U+qllYl  = V A { I N I + C ~ ~ ~ ~ } ,  (3.61) 

which is satisfied for all N if 
U 
V 

A = -tanhp, (3.62) 

7T 
tanhp = - (3.63) IU' and 

Thus, with A andp given by (3.62) and (3.63), an exact solution of (3.51) is 

W 

fC.1 = C Aexp[-(pINI +inNx/Z)] (3.64) 
- W  

m 

exp [ - (p + in@) N ]  = A Re eoth {&p + inx/Z)}, 

from which we obtain finally 

(3.65). 

To begin the interpretation of this solution, we first note from (3.63) that U 
must be positive. Therefore the solution as here presented applies only to the case 
of 'supercritical' speeds (c2 > cg), although a simple modification will later be 
shown to cover the subcritical case. It is also noted from (3.62) that A takes the 
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sign of V .  The sign is always positive for the h s t  wave mode, because then 4, has 
no zero in the open interval (0 ,  h) and consequently, in the definition (3.53) of V ,  
d$,/dy > 0 throughout the interval. But nothing definite can be said in general 
about the sign of V for the higher modes. 

To be specific, therefore, let us refer to the first mode for the discussion of wave 
properties. As is obvious from (3.64), the mean value of f(x) is given by 

- 
f =  A,  = A; (3.66) 

and so, for supercritical wave trains in the first mode, there is a mean upward 
displacement of the surface 7 = h from its undisturbed level.? According to 
(3.65), the elevation of the wave crests is given by 

(3.67) 

211 3 

FIGURE 4. Graph of the function f(z) = gsinh~, / fcosha(g~)-cosa(~~~/Z)} with p = 1.0, 
illustrating form of periodic wave over one period. The amplitude is 1.720, and the mean 
value of the function is 1.0. 

and the elevation of the troughs by 

4Asinhp 
fmin = cosh2 (ip) = A tanh ( 4 ~ ) .  (3.68) 

Hence the wave amplitude may be defined as 

f” = fmax - fmin = ZA cosechp. (3.69) 

Also, the elevation midway between crests and troughs is 

Q(fmax+fmin) = Acothp = u / V ,  (3.70) 

which exceeds f in the ratio (cothp) : 1, indicating that the waves are peaked 
upwards-i.e. sharper at  the crests than at the troughs. An example of the wave- 
form, with p = 1.0, is shown in figure 4. 

t By an obviously inherent property of the theoretical model, there is also a mean 
displacement z = A of all surfaces ‘1] = const. k h in region I1 (see equation (3.75) below). 
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The outstanding practical application for the present form of solution is to the 
wave train developed by a weak bore. The idea is represented in figure 5. A bore 
will advance towards the undisturbed fluid at a supercritical speed (i.e. faster 
than any infinitesimal wave) and will generally evolve in the first mode since the 
respective speed of propagation is greatest. As indicated by (3.66), the bore will 

- 2 
o c o  

- -- -z-- 
FIGURE 5. Illustration of undular bore. Speed is supercritical, and mean level 

of heterogeneous region I is raised. 

FIGURE 6. Illustration of subcritical wave train formed behind solid obstacle. 
Mean level of heterogeneous region I is lowered. 

therefore be characterized by an increase in the mean level of the inner region I, 
thus in an obvious sense resembling an open-channel bore. With regard to 
heterogeneous-fluid systems of limited total depth, the application of cnoidal- 
wave solutions to the description of internal bores was discussed a t  some length 
by Benjamin (1966, $53.7, 3.8), who showed that the amount of dissipation 
occurring at the front of a bore fixes the properties of the trailing wave-train. 
Unfortunately, since the present analysis has proceeded on different lines, we are 
not now in a position to evaluate the effects of dissipation; but the following 
general interpretation is suggested by the previous work. 

If the bore is very weak, the loss of energy a t  its front is likely to be only a small 
fraction of the maximum amount possible at a given propagation speed (i.e. at 
a given U as defined by (3.52)). Then the waves formed are describable by letting 
p take extremely small values, so that A = ( U / V )  tanhp is also very small. In  
this case the period of the waves, 21 = 2n/AV, is very great, and the wave-form 
determined by (3.65) is markedly unsymmetrical about the mean level, being 
greatly stretched at the troughs. The wave-train then resembles a succession of 
solitary waves (see $3.6 below). In  stronger bores a larger fraction of the possible 
energy loss may occur, in which case the waves formed are describable by taking 
larger values of p .  And the extreme case where the maximum loss occurs is 
represented by the limit p +a. Then the wave amplitude f^ shrinks to zero and 
the wave-form becomes sinusoidal. Also, equations (3.62) and (3.65) show that 
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f+ U / V ,  and (3.63) shows that l+n/U. Thus, in this limit the bore comprises 
a transition to a uniform state, with f = f = U /  V ,  which in a frame of reference 
moving with the bore front is subcritical (since we have just seen that infinitesimal 
waves with the speed c and with finite wavelength 21 = 2n/ U can occur upon it. 
All the properties noted in this interpretation correspond to properties of surface 
bores in open channels, and of internal bores in heterogeneous fluids of finite 
depth (cf. Benjamin & Lighthill 1954; Benjamin 1966). 

It remains to find a solution for waves of finite amplitude at subcritical speeds 
(i.e. with c2 < cg and therefore U < 0). This category includes, of course, waves 
formed in the wake of a solid body moving horizontally at  a steady speed less 
than c,, (see figure 6); and the required solution should, in the limit of small 
amplitude, recover the results of the linearized theory presented in 0 3.2. First we 
observe that the substitution of 

(3.71) 
U 

into (3.51) gives - U [ -  ‘CTf;2+F{f;) = 0. (3.72) 

Thus, when U is negative, f ;  satisfies the same equation as f does in the case of 
positive U ;  therefore 5 is given by the previous solution (3.65) with 1 Ul replacing 
U in the specifications (3.62) and (3.63) of A andp. It follows at once that in the 
subcritical case the mean value off is given by 

f (4  = 7 + a x )  

- P I  f =  -_ (1-tanhp). 
V 

(3.73) 

This shows that the formation of waves in the first mode (i.e. with V > 0) ,  behind 
a body moving at  subcritical speed, will lower the mean level of region I. 

As a guide to the practical application of the modified solution (3.71), the 
parameter p may be reckoned to depend inversely on wave resistance, even 
though, as with regard to dissipation previously, we are not in a position to  
specify its precise relation to this physical property. The case whenp is extremely 
small corresponds to a maximum realizable wave resistance for a given c2 < c;. 
Then the waves have a maximum amplitude 2 I U I / B and an exaggerated period, 
so that they resemble a succession of solitary waves just as in the former, super- 
critical case when p was made extremely small-except that now they are based 
on a mean levelf = - I Ul /V .  The uniform state f = - I Ul /V  is therefore super- 
critical in a reference frame moving with the (subcritical) velocity c implied by U .  
The other extreme, p -+a, again corresponds to infinitesimal waves. Equation 
(3.73) givesf= 0 in the limit, and the modified version of (3.63) gives 

- u = n/l. (3.74) 

Noting that n/l is the same as wave-number llcl, we readily confirm that this is 
equivalent to the result (3.16), or (3.17), obtained for infinitesimal waves in $3.2. 

Finally, the specific form of the periodic solution (3.49) is noted, which 
describes the displacement z(x, 7) throughout region 11. Substituting (3.59), we 

have m 

z = A C exp [ - [ IN1 {p + n(7 - h)/l) + inNx/l]]. (3.75) 
N=-CC 

37 Fluid Mech. 29 
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Hence the same steps that took us from (3.64) to (3.65) lead to 

+A sinh{p i- n-(q - h)/ l}  z = -  
cosh2 { i ~  + +jlr(q - h)/l) - C O S ~  ( $ 7 ~ ~ / l ) .  

(3.76) 

This is the result for the case of supercritical speeds, and the corresponding results 
for the other case should be obvious from the preceding two paragraphs. 

3.6. Solitary waves 

The solitary-wave solution may be obtained tentatively from the results of $3.5 
by taking the limit 1 + co, p -+ 0, A +  0 in such a way that 

lp+mh, lA-tQnah, (3.77) 

where h and a are finite constants, h being necessarily positive and a having the 
sign of V .  Equation (3.65) gives in the limit 

while (3.62) and (3.63) give 
a = 2U/V, h = l / U .  

(3.78) 

(3.79) 

The same procedure applied to the periodic solution (3.71) for the subcritical case 
merely gives a wave of the same form superposed on the uniform supercritical 
state represented by f = U/V ( U  < 0). Hence we conclude that the present 
solitary waves, like ones of the more familiar kind, always have supercritical 
speeds. 

It is a simple matter to c o n k  the solution (3.78) directly by substitution in 
equations (3.51) and (3.55). There is some interest, however, in considering the 
Fourier transform of equation (3.51), thus proceeding in a way analogous to  that 
taken in $ 3.5 to prove the periodic solution. The transform off can be expressed 
by a convolution integral, whereupon (3.5 1) gives 

( U + l k l ) f ( k )  = v j m  f ( k ’ ) f ( k - k ’ ) d k ’ ,  (3.80) 
- W  

in whichfis defined by (3.47). Now, let us try 

f(k) = ~ahexp[-hJk] ] .  
We have 

(3.81) 

m Sm f ( j k ’ ) ~ ( k - k ’ ) d k ’  = i a 2 ~ 2 1  exp[-h(1k’1+1k-k‘l)]dk‘ 
- W  -W 

- 1 2  - pa h 2 exp[-hlkl](A-l+lkl}, (3.82) 

and hence see that (3.80) is satisfied when a and h are as specified by (3.79). It 
follows by (3.46) that the solution of (3.51) is 

f ( x )  = +ah/ exp [- ( A  ~kl +ihx) ldk  
m 

-m 

as found before. 

(3.78‘) 
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Substituting (3.81) into (3.50), we find that the displacement z(x, 7) in region I1 
is given by 

(3.83) 

This result shows that the displacement for 7 >, h is the same as if the homo- 
geneous fluid were extended downwards to 7 = - 03 and a dipole were placed at  
x = 0, 7 = h-A. Note that since A/h = O(s-l) B 1 by hypothesis, the virtual 
dipole is far below the bottom 7 = 0. 

4. Other applications 
4.1. The heterogeneous layer uppermost 

We now consider how the results of $ 3  can be adapted to the other physical 
models shown in figure 1. The simplest case is the one shown in figure 1 (b ) ,  where 
the fluid is bounded at the top by a rigid plane and extends downwards to infinite 
depths. If 7 and y are measured downwards from the boundary, g must be replaced 
by -9  in all the equations; but we now have dpldy 2 0 as the condition of 
stability, and so the analytical problem takes precisely the same form as before. 
In  particular, the coefficients U and J' determining wave properties are given by 
the same formulae, (3.52) and (3.53). The conclusion that y-7  2 0 everywhere 
for solitary waves in the first mode still holds, but now, of course, it  means that 
the displacements are downwards. 

4.2. Effects of a free surface 
When the fluid is bounded at the top by a free surface (figure 1 (c ) ) ,  a condition 
of constant pressure must be considered to replace the condition of zero vertical 
displacement that has so far been applied. Evaluation of Bernoulli's equation in 
both the original and disturbed flows gives, if y and 7 are measured downwards, 

(cf. Benjamin 1966, equation (3.7)). And, with (3.4) substituted, the linearized 
version of (4.1) is 

c2Cs = - g g  at 7 = 0. (4.2) 

c =  exp[- l k l ~ , ~ - i k x ]  (4.3) 

We should a t  this point note that 

satisfies the linearized differential equation (3.5) everywhere in the fluid, and also 
satisfies the boundary condition (4.2), provided 

c2 = gl lk l .  (4.4) 

Thus it appears that, whatever the form of p(q),  infinitesimal waves are possible 
having the same speed as waves in a homogeneous liquid of infinite depth. This 
fact was observed by Lamb (1932, p. 376) and has been discussed further by Yih 
(1965, p. 54). Clearly, however, these are not true internal waves: rather they are 
surface waves which, it so happens, retain all their properties when density is 

37-2 
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allowed to vary. Their speed increases without limit as lk] is reduced, rather than 
rising to a definite maximum like an internal-wave speed, and so there is obviously 
no solitary wave in this mode. The present analysis is incapable of estimating the 
effects of finite amplitude on these waves, and nothing more need to said about 
them here. 

For internal waves in liquids with a free surface, (4.3) shows the first boundary 
condition on #o(y) to be 

$0 = -&dy d'~ at q = 0, (4.5) 

where K~ = g/c$ The other boundary condition, at 7 = h, and the differential 
equation for $o remain the same as in (3.13), so that again $o and K~ are deter- 
mined by a Sturm-Liouville system-together with the normalization (3.35). 
Since again #o must rise (after n - 1 oscillations) to a maximum of 1 at 7 = h, the 
derivative in (4.5) is O(nh-l), where n = 1,2,3,  ... is the mode number. Also, 
from (3.13), we deduce that ~ o l  = O(n-2hSp/p), if Sp is the total density variation. 
The right-hand side of (4.5) is therefore O(n-lSp/p), which may well be negligible 
when the fractional variation Sp/p is very small-as it usually is in practical appli- 
cations. Thus, without much error one might take q50(0) = 0 as the upper 
boundary condition, so treating the problem as if the surface were rigid. That 
there will be no important effect on the non-linear theory can be seen from the 
facts that the integral in the formula (3.52) for U is O(n2/h)  and V as given by 
(3.53) is O(n3/h2), showing that neither could be affected vitally by corrections of 
the order in question. [Note that the situation respecting long internal waves of 
finite amplitude in fluids of limited depth is quite different. It has been shown by 
Benjamin (1966, $4, Example 3) that the wave properties can change radically 
according to whether the upper boundary is fixed or free, irrespective of how 
small Sp/p is. The reason essentially is that a coefficient corresponding to V ( K  in 
the paper cited) is only O(h-2Sp/p) in the case of limited total depth h.] 

Nevertheless, the effects of a free surface can readily be included in the theory 
without further approximations, and the following summary of the argument 
seems worth giving. After substitution of the expansions (3.18) and (3.20), the 
boundary conditions are again satisfied to O(s)  by c(o) = F ( S )  #0(7), provided 
(4.5) is used in the definition of #o. But, to O(s2) ,  (4.1) requires that 

= J ( X ) ,  say, at  q = 0. (4.6) 

The expression (3.38) is evidently insufficient to satisfy (4.6), but we may add to 
it any term in the form G ( X )  $(r),  where 

is the second part of the complementary function for the differential equation 
(3.36) [i.e. the second solution of (3.32) or of the differential equation in (3.13)] 
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and is specified to comply with the normalization condition &(X, I t )  = 0. There- 
fore we can take 

which is easily seen to satisfy (4.6). 

follows 
For substitution in the second boundary condition (3.37), at T,I = h, there 

(4.9) 
1 "  J$T/(h) 

b ( X ,  I t )  = mjo R h d y  + $, (O)  + * 

1 
But we have 1C'&O)+KO$(O) = p(o)$o(o) (4.10) 

in consequence of ( 4 4 ,  and 

since $ov(h) = 0. Hence 

(4.11) 

(4.12) 

Recalling that R denotes the right-hand side of (3.36), we now integrate by parts 
and find that one set of integrated terms vanishes because q507(h) = 0, while the 
other cancels with the term that has J as a factor. Thus we obtain finally 

which is precisely the same expression that appeared on the left-hand side of 
(3.40). 

This result means that the formulae (3.52) and (3.53) for U and V apply equally 
well to the present case as to the case of a rigid boundary. It seems very remark- 
able that the non-linear effects of the free surface are represented in these compact 
formulae simply by the changes in p0 as determined by linearized theory; but, of 
course, the new term introduced in (4.8) affects the second-order displacements 
inside region I. A corresponding result was found for fluids of limited depth by 
Benjamin (1966, 3 3.5), using a quite different method, and this can easily be 
confirmed by extending the present argument to the case of a rigid boundary 
at T/ = h. 

4.3. Heterogeneous layers remote from any boundary 

We turn now to the class of problems indicated by figure 1 (d). Here the fluid 
extends to great distances both above and below the layer across which the 
density varies. This case can be treated by a fairly obvious modification of the 
method developed in 0 3; for instance, in the Sturm-Liouville system determining 
q50 and co, the two end conditions would be that d$,/dy should vanish at both the 
upper and lower bounds of region I. However, a fully generalized treatment 
presents certain complications which do not seem worth our attention now. With 
regard to practical applications it seems adequate merely to note the following 
very simple means of using the results already obtained. 
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Suppose that the density variation is both small and antisymmetrical about 
a central plane, say 7 = 0, so that p(7) +p( - 7) = 2p(O) for all 7. Then the gravita- 
tional forces on the fluid are antisymmetric; and on the basis of the familiar 
Boussinesq approximation, which takes the effect of the small density changes 
on the inertia of the fluid to be negligible, the space below the plane of symmetry 
may be regarded as dynamically similar to the space above. The motions in each 
space are thus approximately the same as if a rigid boundary were placed a t  
7 = 0, and so they can be described by direct application of the solutions given 
in fj 3. Clearly, for solitary waves in the first mode, the displacements are upwards 
above 7 = 0 and are downwards below. 

The admissibility of the Boussinesq approximation is shown by the same con- 
siderations that showed the effects of a free surface to be insignificant when 
O(Sp/p) < 1. Namely, neither U/(c2  - cg) nor Vis small enough to depend crucially 
on the effects neglected. Again the situation is simpler than for solitary waves in 
fluids of limited depth. Long (1965) and Benjamin (1966, see particularly the 
appendix) have shown that the approximation generally leads to serious errors 
in that case. 

Consistent with this use of the Boussinesq approximation, the results from fj 3 
may be simplified somewhat. We may put p = p(0 )  in the first term of the 
differential equation (3.13) for #o, thus getting 

(4.14) 

and the same approximation may be made in the formulae (3.52) and (3.53) for 
U and V .  Note that for the type of density distribution assumed, the coefficient 
of q50 in (4.14) is an even function of 7; therefore #o is either an even or an odd 
function. The case where #o is odd is, of course, what we have in view for the 
present application of the theory, and no attempt will be made to deal with the 
even wave modes-for which, it turns out, the Boussinesq approximation is 
invalid as regards finite-amplitude effects. 

5.  Examples 
The main conclusions of this paper have been reached without the need arising 

to specify the density distribution, other than that it belongs to the general 
category explained at the beginning. But now three examples will be worked out 
to illustrate the use of the results obtained in $0  3 and 4. Each example requires 
us merely to find #o from the linearized long-wave equations, at  the same time 
finding co, and to evaluate the definite integrals (3.52) and (3.53) expressing 
U and V .  Only the properties of solitary waves in each system will be noted 
explicitly, but the description of periodic long waves of finite amplitude is then 
obvious from the discussion in 5 3.5. 

Example 1. Two-&id systems 

First we confirm that the results of the general analysis bear out the simple 
deduction made at  the end of $2, where the system shown in figure 7 was dis- 
cussed. To preserve the argument in the form set out in $3, the interface between 
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the two immiscible fluids may be considered to lie an infinitesimal distance below 
the level 7 = h at which the boundary condition on q50 is to be applied. Below the 
interface, the differential equation (3.13) reduces to 

and since $o must be continuous everywhere (as required for continuity of the 
vertical displacements of the fluid), the solution vanishing on the bottom and 
satisfying (3.35) is 

(5.2) $0 = 7Ih. 

FIGURE 7. Illustration of two-fluid system in which the upper fluid 
extends to 7 = 00. 

Now, the differential equation (3.13) implies that if q50 is continuous, then 
pc;(d$,/dy) - gpq& also must be continuous, and on examination this requirement 
is seen to ensure the continuity of pressure (cf. Benjamin 1966, p.263). Since 
d$,/dV = 0 at 7 = h immediately above the interface, it follows a t  once that 

where p1 is the density of the lower fluid and pz that of the upper. This expression 
for co checks with the results due to Lamb that were quoted in 5 2. 

Substituting (5.2) into (3.52) and (3.53), we obtain 

The general non-linear equation (3.51) for stationary waves therefore takes the 
form 

which agrees with (2.7) to the prescribed order of approximation. Hence, 
according to (3.78) and (3.79), the solitary-wave solution 

applies in this case with 

C 2 = c ; ( l + g )  

and A = - -  *PI h2 
3P2 a '  
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Note that the vertical displacements in the lower fluid are given by (3.48) as 
x = (q /h ) f ( x ) ,  while in the upper fluid they are given by (3.83). 

These results also apply, with obvious modifications, when the layer of depth h 
is uppermost and is bounded on top by a rigid plane. If p1 now denotes the density 
of the lighter fluid, the only change in the previous equations is that - g replaces 
g in (5.3). 

Next, let us suppose that the upper boundary is free. The solution of (5.1) then 
needs t o  satisfy (4.5), and so we have 

(5.8) 

instead of (5.2). Here 7 is measured downwards, and correspondingly 

is the quantity to be made continuous across the interface. Hence the argument 
used previously leads now to 

( P z - P h h  = fi c;, c; = 
Pz PZ 

(5.9) 

where C; is the value obtained in the case of a fixed upper boundary. This result 
agrees with one given by Lamb (1932, p. 372, equation (ZO)), in which taking the 
limit kh -+ 0 establishes the comparison. Note that the effect of the free surface 
reduces the long-wave speed in the ratio (pl/pz)h. 

The formulae (3.52) and (3.53) now give 

Hence the solitary-wave properties are 

and 

(5.10) 

(5.11) 

(5.12) 

Note from (5.12) as compared with (5.7) that the length of the wave, for a given 
amplitude, is decreased in the ratio (p1/pJ3 by the effect of the free surface. Note 
also from (5.8) that there is a plane of zero displacement at  a depth 

cfis = U Z  - Pl ) /P2  

below the undisturbed level of the free surface: above this plane the fluid is 
elevated by a solitary wave, while below it the fluid is depressed. The wave is, of 
course, wholly of depression when the upper boundary is fixed. 

Example 2. Bottom layer with exponential density variation 

The model is illustrated in figure 8. We take p(q) = pep(h-?) in (O,h),  and 
p(q) = p(const.) in (h,m). From (3.13), the equation for becomes 

(5.13) 
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and hence the solution satisfying $o(0) = 0,  $,(h) = 1 is 

e4h-h) sin qr 
$0 = sinqh-7 

585 

with 

The remaining condition, d#,/dy = 0 at 7 = h, gives 

qcotqh+&P = 0, 

which determines q and thereupon co. 

(5.14) 

(5.15) 

(5.16) 

X 

FIGURE 8. Illustration of system in which density decreases exponentially with 
height in bottom layer. 

The notation q(n) (n = 1,2,3, ...), as used in 5 3.2, is now introduced to denote 
the solutions of (5.16) in order of increasing size. For small ph, we find from 

Ph (5.16) that 

and hence from (5.15) that 

@)h = (n-$)n+-- -O(P2h2), 
(2n- l ) n  

(5.17) 

(5.18) 

In  a practical application of this model, Ph would probable be very small, so that 
just the first terms of (5.17) and (5.18) would be an adequate approximation. The 
result then is the same as what we would get by approximating the density distri- 
bution as a linear function, p = p{l+P(h-r)},  and making the Boussinesq 
approximation. 

The substitution of (5.14) into (3.52) gives 
UC; h 

= cosec2 qh! (q cos qr + $$sin qT)2 CEy 
c2-c; 0 

= &q2h( 1 + S2)2 + t P (  1 + S2), (5.19) 

where S = +P/q, 1 + a2 = cosec2qh, and where the mode number is implicit. Next, 
(3.53) leads to  

V = e-4flh cosec 

- 3q2( 1 + S2) 

esfls (q GOS qq + @sin qq)3dq 

(( - l)m+l (3 + 282) - S( 1 + S2)a (1 - e-@-8h)}. (5.20) - 
9+82 
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For /3h < 1 and therefore 6 < 1 ,  the first approximation to these results is 

(5.21) 

(5.22) 

which evidently improves in accuracy with increasing n. 
Note that V(n) and q5hn)(h) are either both positive or both negative. This means 

that in a solitary wave the displacements a t  the top of the heterogeneous region 
are always upwards, whatever the mode number n, although for n > 1 there are 
strata in which the displacements are downwards. Hence, to a first approxima- 
tion for small /3h, the solitary-wave solution in 0 < y < h can be expressed as 

with a > 0 and 

(5.23) 

(5.24) 

(5.25) 

Corresponding expressions free from restriction on the magnitude of /3h can be 
written down directly from (5.19) and (5.20).  

Example 3. Density variation with tanh projile 

The model is illustrated in figure 9.  The density is given by 

p(y )  = p( 1 - rn tanh ay), (5.26) 

and the fluid is supposed to extend infinitely far both upwards and downwards. 
This example is of special interest in that the bounds of the heterogeneous 
region I are not precisely defined, although the way to apply the results of the 
main analysis is clear. We might reason, in the first place, that there could be no 
significant effect on the possible wave motions if the system were very slightly 
modified so that the density variation were terminated at  7 = & h, say, such that 
ah  $ 1. Then the same formal approach as used previously would be applicable. 
But clearly the final results would be practically independent of the exact choice 
of h, and this device would introduce needless complications. The more satis- 
factory rationale is to regard the two expressions (3.48) and (3.50) for x(x ,y)  as 
inner and outer approximations, valid respectively for 171 < h and a-1 < 191. 
The long-wave assumption underlying the theory amounts here to the state- 
ment that ah = O(e-l) $ 1, and so we may envisage an intermediate region, 
a-l< 171 < A, in which the two approximate solutions overlap. The method of 
analysis developed in 8 3 now makes the two solutions give the same values of 
z and &jay throughout this region, rather than at a specific interface 7 = h. The 
details of the analysis remain just the same as before, except that the upper 
boundary condition on q5,-, may conveniently be taken to apply at a7 = co. 
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As was explained in § 4.3, the Boussinesq approximation will be used in the 
treatment of this example, and only antisymmetric wave modes will be con- 
sidered. Accordingly, the other condition on go is that $o(0) = 0 or, which is the 
same thing, that $o is an odd function of y. 

FIGURE 9. Illustration of system in which the heterogeneous layer is remote from any 
boundary. The asymptotic values of the density, p(1 w), are indicated. 

From (4.14) with (5.26) substituted, the equation for $o becomes 

) $0 = 0. 

Now put 

with I $0 = P(P), 
p = tanhay, dp  = a(l-p2)dT. 

Then (5.27) takes the form 

(5.27) 

(5.28) 

(5.29) 

which is seen to be Legendre's equation if 

gw/acg = n(n+ l), (5.30) 

where n is a positive integer. The condition (5.30) is necessary for (5.29) to have 
a single-valued solution applicable over the whole physical domain - 1 < p < 1 
(Whittaker & Watson 1927, § 15.2), and we conclude that it must fix the possible 
values of the wave speed co. Thus, rearranging (5.30), we have 

(5.31) 

and the corresponding solutions that remain finite throughout - 1 6 p < 1 are 

$La) = P,(p) = P,(tanhay), (5.32) 
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where P, denotes the Legendre polynomial of degree n. Only the solutions with 
n odd are relevant at the moment, however, because only these have the required 
symmetry property, so satisfying q5bn)(0) = P,(O) = 0. The other end condition, 
dq5bn)/dy-t0 for ?/-+a, is obviously satisfied. We note also that the Legendre 
polynomials as always defined (Whittaker & Watson, 3 15.1) give us the further 
requirement q5bn)(co) = 1, since P,(1) = 1. 

In  the formula (3.52) for U the upper limit of integration may now be taken 
as a y  = 03 and, in accordance with the remarks made at  the end of 34.3, the 
approximation p = i j  may be made in the integrand. The substitution of (5.32) 
then gives 

Integrating by parts and using the differential equation for P,, we hence obtain 

(5.33) 

where the final equation is a fundamental result in the theory of the Legendre 
polynomials (Whittaker & Watson, 5 15.14). Similarly, the formula (3.53) gives, 
f o r n =  1 , 3 , 5  ,..., 

(5.34) 

Here the second expression is easily obtainable from the first by integrations by 
parts and use of recurrence formulae for P,, and to obtain the last a formula 
given by Hobson (1931, p. 87) may be used. The first two values specified by 
(5.34) are V(U = 4a2 5 7  V(3) = 288 385a 2. (5.35) 

In  the first mode, since Pl(p) = p, the solitary-wave solution for the central 
region ( Iyl < A )  is therefore 

(5.36) 

with [c(1)]2 = gw - (1 +$an>, (5.37) 
2a 

h = 5/( 2a2a). (5.38) 

This solution applies, of course, both above and below the plane of symmetry. 
Above, the displacements are upwards, while below they are downwards. 

For the higher modes also, the Vffl) are all positive, which means that the dis- 
placements in the outer parts of the central region (i.e. wherep _N k l), and hence 
also in regions 11, are always away from the plane of symmetry. In  the next 
higher mode, for instance, the solitary-wave solution for the central region can 
be expressed as 

x = i(5.tanh3aq-3tanhay)- (5.39) 
U A 2  

X 2 + h 2 '  
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with a > 0 and 

(5.40) 

(5.41) 

Note from (5.39) that the displacements are inwards (i.e. downwards above and 
upwards below 7 = 0) for 

As a final comment on this example, let us specify the coefficients of the 
approximate dispersion relation (3.17) for inJinitesimaZ sinusoidal waves. The 
integral appearing in (3.16) has already been evaluated in the derivation of (5.33). 
Hence, using the expression (5.31) for cp), we obtain a t  once 

< Itanh-l(3/5)41 = 1.022. 

n(n+ 1)a 2n(n+ 1) a 
(5.42) 

This result is found to hold also for the even modes, with the obvious exception of 
n = 0, and it agrees with the exact result for c(@(k) found by Groen (1948) for this 
example. [In the exceptional case the heterogeneous layer moves up or down as 
a whole, and a study of the full linearized equations shows that c2 = O(wg/k )  
rather than O(wg/a), so that a long-wave approximation of the present kind is 
clearly unavailable. Moreover, the Boussinesq approximation appears to be 
invalid for this particular wave mode (cf. Groen 1948).] The reasons why no 
attempt is made to develop a finite-amplitude theory for the even modes have 
been explained at  the end of $4.3. 

6.  Conclusion 
It is worth emphasis that only a first approximation to the effects of finite wave 

amplitude has been worked out, and the present results may be unreliable 
quantitatively when the amplitude is not a fairly small fraction of h (or:.-1 in the 
last example). The salient properties of this class of internal waves seem to be well 
explained, however; and though higher approximations could be derived readily 
enough by following the scheme set out in $ 3.3, there would be comparatively 
little profit in such extensions.To deal with waves of large amplitude, direct 
numerical solution of the unsimplified governing equations (e.g. equation (3.3), 
or some transformation of it) is likely to be more rewarding. With increasing 
amplitude, the ultimate limitation on perturbation analyses of the present kind 
is posed by the occurrence of stagnation points within the flow, which develop at 
still larger amplitudes into regions of circulating fluid (see Benjamin 1967 for a 
discussion of this point). In  this situation the transformation (3.1), upon which 
our whole analysis is based, is certainly no longer valid-since it presupposes a 
non-singular mapping of the whole flow field by the original streamlines of the 
undisturbed flow; and indeed the situation offers small hope of any general 
analytical treatment. 

The main results obtained in $53 and 4 need only minor modifications to 
include the effects of a horizontal current in region I. A redevelopment of the 
analysis is hardly required, since the outcome has several precedents in previous 
papers by the author dealing with wave propagation in non-uniform flows 
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(Benjamin 1962, 1966, 1967). Let U(7)  denote the velocity of the undisturbed 
fluid in the x-direction, and suppose that U = 0 outside region I. Then, if c is 
the wave speed, the function W = U f c represents the primary velocity as 
observed in a frame of reference travelling with the wave, and W, = U f c,, may 
be written to denote the corresponding function for infinitesimal waves of 
extreme length. Here the ambiguous sign covers the case of propagation with 
( - ) and against ( + ) the current. Reference being made to the previous papers 
for explanation, the modifications may now be listed as follows: (i) in the equation 
(3.13) for $,, after multiplication of the two terms by ci the factor pc: in the first 
should be replaced by p W$ (ii) In  the free-surface condition ( 4 4 ,  cg should be 
replaced by Wg(0). (iii) In  the formula (3.52) for U ,  the factor (cz-c$p should be 
replaced in the integrand by ( W 2 -  Wi)p.  (iv) In  the formula (3 .52)  for V ,  the 
factor p should be replaced by p Wi&. 
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has been done, is supported by the U.S. Office of Naval Research under Contract 
Nonr-3216(29) and by the U.S. National Science Foundation under Contract 
GP-2414. I am grateful also to  Prof. W. H. Munk and Prof. J. W. Miles of the 
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Appendix 
Here an alternative expression for $(f(x)> is noted, applying in the case 

f( co) = 0. Admittedly there is little use in this as regards the present problem, 
since the exact solutions of equation (3.51) have already been found. But 9 will 
also be encountered in problems of unsteady wave motion, where equation (1.11) 
would apply, and it is possible that the alternative expression might then be more 
helpful than the previous one in terms of Fourier integrals. 

First we observe from (3.47) and (3.55) that the Fourier transform of S(f(x)} is 

But, by a simple application of contour integration, we have 

where B denotes the Cauchy principal value of the integral taken along the real 
axis. Hence (A 1) is expressible by 

The order of the integrations in (A 3) can be reversed, whereupon this expression 
is cast in the standard form of a Fourier transform (i.e. z exchanges roles with w 
as the dummy variable corresponding to x in (3.47)). Then it is seen that 
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which expresses 9 as the Hilbert transform of - df/dx.  This result is also deriv- 
able, on a perhaps more familiar basis, from the solution of the original potential 
problem in terms of a Green’s function (i.e. the problem defined by (3.21) and 
(3.22),  also described below (1.10)).  

It may be of interest to check that the solution (3.78) does in fact satisfy the 
alternative form of non-linear integral equation given by putting (A 4) in (3.51). 
We have in this case 

from which there follows by fairly obvious steps 

The first integral in (A 5 )  is a standard form. The principal value of the second can 
be found at once by use of Cauchy’s theorem on contour integration: by Jordan’s 
lemma, this principal value is the sum of the residue for the pole at w = ih and 
half the residue for the pole at w = x. Hence a combination of the terms leads to 

which is, as required, the same as - Uf+ Vf2  when U = l / h  and V = 2/ha. 
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